منابع مشابه
Lebesgue-type Inequalities for Quasi-greedy Bases
We show that for quasi-greedy bases in real or complex Banach spaces the error of the thresholding greedy algorithm of order N is bounded by the best N term error of approximation times a function of N which depends on the democracy functions and the quasi-greedy constant of the basis. If the basis is democratic this function is bounded by C logN . We show with two examples that this bound is a...
متن کاملOn isomorphism of two bases in Morrey-Lebesgue type spaces
Double system of exponents with complex-valued coefficients is considered. Under some conditions on the coefficients, we prove that if this system forms a basis for the Morrey-Lebesgue type space on $left[-pi , pi right]$, then it is isomorphic to the classical system of exponents in this space.
متن کاملThe Sampling Theorem in Variable Lebesgue Spaces
hold. The facts above are well-known as the classical Shannon sampling theorem initially proved by Ogura [10]. Ashino and Mandai [1] generalized the sampling theorem in Lebesgue spaces L0(R) for 1 < p0 < ∞. Their generalized sampling theorem is the following. Theorem 1.1 ([1]). Let r > 0 and 1 < p0 < ∞. Then for all f ∈ L 0(R) with supp f̂ ⊂ [−rπ, rπ], we have the norm inequality C p r ‖f‖Lp0(Rn...
متن کاملRenorming spaces with greedy bases
In approximation theory one is often faced with the following problem. We start with a signal, i.e., a vector x in some Banach space X. We then consider the (unique) expansion ∑∞ i=1 xiei of x with respect to some (Schauder) basis (ei) of X. For example, this may be a Fourier expansion of x, or it may be a wavelet expansion in Lp. We then wish to approximate x by considering m-term approximatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte für Mathematik
سال: 2016
ISSN: 0026-9255,1436-5081
DOI: 10.1007/s00605-015-0862-0